Interview questions, and answers!

Written by Tim Black
Tuesday, 12 March 2019 22:47

I'm looking for a new job as a full-stack web developer, so thought it might be useful to me and
my potential interviewers to share the answers | wrote recently to some questions | was asked
in an interview. Happy reading!

What is important to you in a career?

| want to use my qifts to serve other people and provide for my family, and do the best job | can
at that.

Have you ever worked remotely? If so, what challenges did you face and how did you
overcome them?

Yes; nearly all of my 19 years of web development work has been done remotely. One
challenge | faced was that a client asked for way more work than | could perform, and when |
could not complete all of that work, he refused to pay for the work which | had actually
completed! | had to let that client go. | learned a lot from that, but especially to communicate
with a client early, often, and specifically about the client's needs and the project's progress. In
my current job, we use Slack all day, occasional phone calls and screen sharing, Trello for issue
tracking, and (rare!) lunches at a restaurant, and this regular communication helps us get things
done. Most of the time I'm free to work without distraction, and we have open lines of
communication to get help when we need it. For me, this arrangement has been ideal.

Describe the problem solving methodology you would use if asked to implement a new
feature in an existing codebase.

Here's how it works in my current job. Typically | will get specific instructions from the product
designer describing the new feature, sometimes with screenshots of how it should look. When
something isn't described clearly enough or it doesn't quite make sense, | work with the
designer to nail down the specifics so I'm sure I've got it right. If the feature is really large in
scope, | document the feature's design first, starting with the intended use case, then the Ul
components & functionality, then the data model or database schema, then any new modules of
code needed, then any general API surfaces that are needed. All documentation is versioned

Interview questions, and answers!

Written by Tim Black
Tuesday, 12 March 2019 22:47

with the code.

Then | move to implementing the code. | start by making a new feature branch using git flow. |
add the feature branch's name to the Trello card. If | don't already know where the code needs
to be modified, to find the right location at which to begin modifying the code, | often start from
the user's first point of interaction with the app, so | inspect the HTML source and trace the
execution and the data back through events, variables, HTTP requests, functions, back to the
database, until | find the location where the new feature can be implemented. | often then use a
debugger to step through the execution to be sure of its flow and to know exactly what data is
present. In the places where we are able to use unit tests, | write a unit test first. Then | outline
the code changes | think need to be made in comments, then | write the code (including
docblocks for methods), run it, see if the unit tests pass and the user interaction works right, and
debug as necessary.

After implementing the code, | briefly document the changes | made in a git commit message
(formatted for conventional-changelog), include the Trello card's URL in the commit message,
rebase the feature branch on the develop branch, squash the feature branch if appropriate, and
merge it to the develop branch. After testing the new feature and getting approval from the
product designer, | merge the changes from the develop to the master branch and push them to
production. Then | record any useful notes in the related Trello card (noting the relevant git
commit hash; I like how Github automates that part) and move it to the "Deployed" list. That
way, if we discover later that the problem isn't really solved, we have a paper trail to follow to fix
it better in the future. In a hobby project | used TravisCl to push changes to master & production
only when their unit tests passed, to implement a CI/CD deployment pipeline.

How have the SOLID principles influenced your code?

Most of my code has not used complex class hierarchies, and most of my time has been spent
writing code that depends on base classes provided in frameworks and libraries, rather than
implementing the base classes myself. So | haven't focused much on the whole domain where
SOLID principles matter the most. But | have learned aspects of SOLID principles and practiced
them as I've matured as a developer. That learning started when | read about extreme
programming on the C2 wiki and elsewhere in the early 2000's. While | care to use many best
practices (e.g., | aim to write clean, well-organized, maintainable, well-documented and
self-documenting code), | also remain a pragmatic programmer, rather than a purist.

2/6

Interview questions, and answers!

Written by Tim Black
Tuesday, 12 March 2019 22:47

Single responsibility principle: | have followed the single responsibility principle more since |
learned to write functions so that they can be more easily unit tested (functions that do only one
thing are easier to test), and because "don't repeat yourself" is good advice most of the time.

Open/closed principle: I've extended base classes plenty in Backbone, TurboGears, Django,
and Codelgniter, and then overwritten the default methods they provide. Ever since learning
how Prototype, Mootools, and other early JavaScript libraries modified global prototypes and so
made themselves incompatible with each other, I've avoided monkey-patching base
classes--who knows what havoc monkey-patching them would cause somewhere else in the
application!

Liskov substitution principle: When I've extended a base class and overwritten the default
methods it provides, I've generally assumed my custom methods should return the same types
which are intended to be returned by the default methods, because | get that changing the
return value to be different than what other programmers expect is not a nice thing to do! It's
best to make code as easy to understand as possible, and avoid things that will confuse the
next developer who reads the code.

Interface segregation principle: Earlier in my career | saved old code that was not used in case |
wanted it again. Now | delete it and rely on git to resurrect it if it's needed again. The reason is
that unused code is literally useless. It wastes developers' time and attention. | haven't written
interfaces. But this same concern would motivate me to avoid writing interfaces that require
subclasses to implement unused methods, and would motivate me to use other structures like
multiple inheritance, mixins/traits, or libraries to implement only the functionality that is needed.

Dependency inversion principle: | don't think I've intentionally tried to make concretions depend
only on abstractions.

Do you have experience with TDD? When is it helpful? When is it not?

Yes.

3/6

Interview questions, and answers!

Written by Tim Black
Tuesday, 12 March 2019 22:47

Test driven development is helpful throughout the whole software development lifecycle. Writing
tests first does a good job of connecting an implementation to its user story, design and
contract. Test driven development can help keep code and the coder focused on implementing
the features that are actually needed (avoiding feature bloat) and promote better code
organization, modularization, and separation of concerns, promoting its readability and
maintainability. Future users can consult unit tests as a form of documentation-by-example to
be sure they understand how each method is intended to be used. TDD provides the developer
an immediate feedback loop which helps catch bugs early, immediately after they are created,
before deploying to production, and this gives developers, management, and clients more
confidence that the software does what it's supposed to do. TDD makes it easier to refactor with
confidence you're not breaking something. TDD can save a significant amount of time because
it makes it less necessary for a human to manually test the same features over and over. TDD
is especially helpful for implementing continuous deployment and delivery, which makes it
possible to deploy new features to production faster than some competitors in the same market.
Tests can help isolate the problem when applications unexpectedly fail in production after they
had been working fine for some time in production beforehand. That kind of failure really does
happen(!), and it's challenging to solve those problems without tests, logs, and other forms of
instrumentation. After a bug is found, tests can provide assurance the bug is fixed. The more
mission-critical a piece of code is to the business, the more it's worth testing to be sure it's still
working correctly.

But not everything needs to be tested. Tests aren't needed for exploratory code, temporary
prototypes, one-off scripts, or 3rd party libraries, and complete test coverage is less necessary
for parts of the code that are not central to the business logic. In practice, | care more to write
unit tests for controller methods than for the Ul or views. Code that requires lots of stubs and
mocks to test can make testing more trouble than it's worth. In the short term, the time needed
to write tests must be balanced with the speed at which new features need to be completed.
Over the long term, tests should be viewed as a way to reduce the time needed for
maintenance (bug-fixing) on the software. The short-term and long-term needs of the business
need to be weighed to know how much time should be given to writing tests. Some legacy code
cannot be tested easily; newer web application frameworks tend to be set up to be more easily
testable.

On the whole, test driven development is more helpful than not.

What new technology have you explored recently and what did you like / dislike about it?

Polymer

4/6

Interview questions, and answers!

Written by Tim Black
Tuesday, 12 March 2019 22:47

I've used versions 0.5, 1, 2, 3 and the most recent pre-release version to make some hobby
apps. Web components' encapsulation and composability are awesome; they are what | always
wanted out of ExtJS, jQuery, Backbone and other frontend libraries. Their encouragement to
just "use the platform" when you can is excellent; it is the future that's becoming the present,
because the platform implements the W3C standards. For example, JavaScript now provides
tagged template literals, which are an effective native replacement for JSX. Polymer's team has
done a great job providing a stable upgrade path between major versions. Polymer never
became popular, and its library-specific 3rd party tooling support isn't strong because it's
bleeding-edge technology, but those down sides haven't bothered me much because Polymer
is mostly W3C standards, which are undeniably popular and have excellent tooling support,
frontend frameworks are beginning to use web components under the hood, and the Polymer
team provides very well-designed starter kit apps to show how to put together a deployable app
using the best current frontend tools.

Angular

I've used AngularJS (version 1) for the past 2 years at work, and am comfortable with it, but find
applications made with it unnecessarily complex. One plus is that Angular's tooling support is
quite strong.

In order to get comfortable with the newest versions of Angular, | have made some tutorial
applications with Angular 7, and appreciate its use of more recent JavaScript and TypeScript
features like modules, which make dependency injection a bit easier, and its use of components
for organizing an app's functionality, but the application architecture it requires still seems more
complex and proprietary than necessary. React, Vue and Polymer are easier to understand and
use, which seems to me to be a very important advantage, because it can speed up onboarding
new developers, can facilitate faster iterations and can better prevent the accumulation of
legacy code which is hard to upgrade to newer versions of its dependencies, so ends up
breaking.

Docker

That's exactly the problem my current employer needs to solve in the next couple years. |
maintain and develop several Codelgniter 2 applications which require PHP 5.6. In order to run

5/6

Interview questions, and answers!

Written by Tim Black
Tuesday, 12 March 2019 22:47

PHP 5.6 on my Ubuntu 18.10 machine, | had previously used the ondrej/php PPA from
deb.sury.org which permits installing several versions of PHP in parallel, but because PHP 5.6
is no longer supported (as of Jan. 1, 2019), in order to continue using it | had to hold back (not
upgrade) some Ubuntu system packages, and eventually that broke a few other packages. The
production servers' system packages will need to be upgraded to remain secure, and to
upgrade the system packages, the apps need to be migrated to use PHP 7.x.

So to begin that transition, and prevent my local system from having broken packages, I've
begun putting the apps in Docker containers. | like that Docker isolates PHP from my system
packages! It will also let us upgrade each legacy PHP 5.6 application to a newer version of PHP
individually as we have time, and until then, it will let us run the PHP 5.6 apps on upgraded and
so secure servers, and make deployment even more stable than the automated deployment we
already have. So I'm getting a Docker setup working to help my coworkers continue to maintain
these apps after my contract ends.

This problem my current employer faces has shown me that companies should invest some
time in upgrading their stack to newer software in order to prevent their software from becoming
unsupported, insecure, broken, or incompatible with newer software, syntax, architectures,
paradigms, etc. and the new efficiencies and so business value they can provide. Upgrading too
often will slow down new feature development, but not upgrading often enough runs a real risk
of the software ceasing to function as a whole.

6/6

